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Summary

This report provides a comprehensive summary of the research work performed over the entire

duration of the co-operative research agreement NAG-I-2234 between NASA Langley Research

Center and Kansas State University.

This summary briefly lists the findings and also suggests possible future directions for the

continuation of the subject research in the area of GPC and NGPC.
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Brief Summary

Model Predictive Control

History of Model-based Predictive Controllers(MPC) goes back to late 70's when the

process industry showed a keen interest in using these control methods. The control for-

mulation at the time was mainly heuristic and algorithmic [1-2], and exploited the increasing

potential of digital processors. These controllers were closely related to the minimum time

optimal control methodology. The receding-horizon principle which is central to the most of

the MPC algorithms came about as early as early 60's [3]. MPCs became quite popular in

the process industries where computational speed was not a major concern. Also, many MPC

algorithms were used on multivariable systems with constraints but no formal proofs of sta-

bility or robustness were available. Another parallel development took place using ideas from

adaptive control which led to the development of self-tuning controllers [4] and extended hori-

zon adaptive controllers (EHAC)[5]. This continued evolution of MPCs led to the emergence

of the Generalized Predictive Control ((]PC) methodology in late 80's [6] which incorporates

all major features of the predictive controllers in a unified framework. The various versions

of the same common idea give rise to the following different types of predictive controllers:

Multistep Multivariable Adaptive Control (MUSMAR)[7], Multipredictor Receding Horizon

Adaptive Control (MURHAC) [8], Predictive Functional Control (PFC) [9], and Unified Pre-

dictive Control (UPC)[10].

MPC has also been formulated in the state-space setting [11], which not only allows the use

of well established state-space theories for analysis but also provides the ease for extensions to

multivariable systems. Moreover, it facilitates the use of stochastic theories and treatment of

actuator/sensor noise. The well developed estimation theory from state space methods can be

easily incorporated without much complication. The perspective gained by working in these

different domains made it possible to devise some simple tuning rules for ensuring stability

and robustness for MPC systems. As a simple analogy, MPC controller can be viewed as an

observer-based controller wherein its stability, performance, and robustness is determined by

the observer dynamics, which can be fixed by adjustable parameters, and regulator dynamics,

determined by MPC parameters such as weightings, horizon lengths, etc. Although, in [12],
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somespecific stability theoremsare given for GPC usingthe state-spacesetting the general

stability results for GPC were lacking. Recently, in 90's, stability of GPC under end-point

constraintswasshownin [13],[14],wheretim equality constraintswereimposedon the output

after a finite horizon. The work in the robustnessarea for GPC has mainly hinged on the

explicit modelingof the uncertaintiesand designingthe controller for the worst-casescenario.

II. Research issues in MPC

The existing technologyof MPCsis not matured enoughevenfor the caseof linearsystems

for aerospaceindustry to usein its current form. The limitations of industrial MPC technology

aresummarizedin [15]. Much work still needsto be donein this area. Following aresomeof

the main issuesthat needfurther investigation.

Over-parameterization:

Guidelinesfor choosinga"minimal" representationof the system (in the parameterspace)

is still an issuewhich needsfurther investigation. Most of the commercialproducts use the

step or impulse responsemodels of the system that are known to be over parameterized.

Moreover,suchmodelsare not valid for unstablesystemsand systemswith integrators.

Optimization of cost function:

The high computational cost is oneof the inherent drawbacksof the MPCs. In an effort

to minimize this cost manyoptimization routines usedin MPC computationsare designedto

yield sub-optimal solutions rather than the optimal solution. Also, it is not known how close

this sub-optimM solution is to the optimal solution. In certain situations thesesub-optimal

solution may not be acceptable. In high-speedapplication on the other hand there may not

be any other choicethan to acceptsuchsolutions.

Uncertainties:

Sincethe crux of the MPC lies in the accuracyof the predictor model it is very important

that the predictor model isobtainedverycarefully andasaccuratelyaspossible.Since,in most

cases,analytically derived modelshave high degreeof approximation, system identification

techniquesareusedto minimize theseerrors. However,it is difficult to usesuch techniquesfor

open-loopunstablesystems.Moreover,despitethe useof best availablemodeling techniques

existenceof modeling errors and parametric uncertainties is unavoidable. This necessitates



systematicmethodologyfor handling uncertaintiesin the system.The techniquesof handling

uncertaintiesin MPC frameworkarestill under developmentand warrant more work.

Tuning parameters:

Although there has been some attempt in devising rules for picking tuning parameters

of MPC, the correlation of tuning parameters and closed-loop behavior is not very clear.

Only empirical results are available (for example, see our earlier work in [16]). Use of tuning

parameters for providing robustness and stability is still the subject of research. Moreover,

tuning under constraints is another challenging problem that needs further investigation.

Stability and robustness analysis:

There are some recent results on the stability of MPCs, however, the results are limited to

a very restricted class of systems under nominal conditions. The issue of stability robustness

is wide open and needs much attention.

III. Nonlinear MPC and neural networks

The central idea of MPC doesn't assume that the system to be controlled has to be

linear. That means, conceptually the idea of MPC architecture can be extended to nonlinear

systems, as well. However, this extension is not that trivial. There are many open issues due

to nonlinear nature of the plant:

Model: The availability of a "good" nonlinear plant model is the main problem. The iden-

tification techniques are not advanced for nonlinear systems as they are in the linear case.

Neural networks offer one possible solution to this problem.

Theoretical basis: The theoretical foundation for analysis of stability and robustness of

nonlinear MPCs is still in its infancy and needs significant work.

Computational complexity: The computational burden for nonlinear MPC is considerably

higher compared to linear case which prohibits their use in real-time applications.

Neural networks as predictors:

Over the last decade, Artificial Neural Networks (ANN) have gained increasing attention

of researchers from various fields. In past, neural networks were mainly used in pattern

recognition and function approximation problems. However, in subsequent years, the range of

neural networks applications has considerably expanded. The application area of our interest



is the control of dynamical systems. In particular, tile focus will be on the use of neural

networksin systemidentification, modeling,and control. Applicability of neural networksin

theseareasis due to their approximation capabilities. The ability of ANN to approximate

any nonlinear function to arbitrary precisionis central to their use in controls. It is this key

property of neural networks which makesANNs a viable tool for identification, modeling,

and control of dynamical systems. The structure of multilayer neural network comprising

nonlinearactivation functions, feedbackmechanism,and useof delaynodesmakesit possible

to modelany dynamical system.The keyresult, which statesthat the multilayer feedforward

networkswith only onehiddenlayerarecapableof approximatinganycontinuousfunction ona

compactsetin a very precisesense,wasprovedindependentlyby many researchers.This result

is basedon the famousStone-Weierestrasstheoremfor approximationof a function. Although

neural networkswith only one hidden layer were provedto be the universal approximators,

no result exists to date which givesthe theoretical basisfor selecting the number of hidden

nodesrequired (or equivalently the numberof basisfunctions required) in the hidden layer.

Artificial neural networkshavebeenshownto performwell in the identification and control

of linear time-invariant (LTI) systems. Becauseof their ability to learn any nonlinear map,

they can be effectivelyused for identification and control of nonlinear dynamical systemsas

well. In general,for nonlinearsystems,the control theory is not asdevelopedas it is for the

linear systems;only systematic methods available to date for analysis of such systemsare

Lyapunov-basedtechniques. In recentyears,someresearchershavedemonstrated the useof

neural networks in the control of nonlinear systems.One drawbackwith the existing neural

network literature for nonlinear systemsis that the results are basedmostly on empirical

methods and no comprehensivetheoretical foundation is available. In addition, most of the

reported methodsare ad-hocand areapplicable for a small classof systems.

IV. Research issues in ANN

The function approximationcapability of ANNs canbeexploited to usethem aspredictors

in MPC architecturefor nonlinearsystems.WhenMPC usesneural network asa plant model,

the resulting MPC architecturewill be calledas NeuralMPC (NMPC). In particular, if ANN

is used in the GPC framework it will be referred to as NGPC. In our earlier work [16],



control of flexible joint link using NGPC was accomplished. Some theoretical as well as some

empirical results were also given for tuning of NGPC parameters. A methodology for modeling

uncertainty was also presented for linear as well as nonlinear systems. Use of ANNs in MPC

architecture has several issues that need to be researched. Some of these issues are specific to

ANNs as predictors and some others relate to assessment of their stability and ttleir role in

MPC framework.

Type and size of ANN:

There doesn't exist any result which gives a clear choice of the type and size of ANN for a

particular application which will give a minimal representation of the system with prescribed

prediction accuracy. The choice of number of hidden layers/nodes and activation function

also becomes important factor in ensuring the stability of learning dynamics of the network.

The problem becomes even more involved if the on-line learning is required.

Stability of MPC with ANN as predictor:

Stability of NMPC is probably the most difficult challenge at this stage of research in MPC

and ANN. It is important that the stability issues related to ANN and MPC are thoroughly

understood before the stability of NMPC can be assessed.

IV Accomplishments and future directions

During the period of one year (06/13/99-06/12/00) following tasks were accomplished.

(a) Stability analysis: the work completed includes characterization of stability of receding

horizon-based MPC in the setting of LQ paradigm. It has been shown that finite horizon

LQ formulation can be used to analyze unconstrained and constrained receding horizon MPC

problems. In the case of constrained problem, however, stability is dependent on solution

trajectories of finite horizon problem reaching into the feasible region where the infinite horizon

LQ problem has finite solution [17].

The current work-in-progress includes analyzing local as well as global stability of the

closed-loop system under various nonlinearities; for example, (i) actuator nonlinearities (ii)

sensor nonlinearities, and (iii) other plant nonlinearities. Actuator nonlinearities include three

major types of nonlinearities: saturation, dead-zone, and (0, ce) sector.

(b) Robustness analysis: It is shown that receding horizon parameters such as input and



output horizon lengths have direct effect on the robustness of the system. It has been shown

empirically that in most cases parametric uncertainties can be handled by increasing the

output horizon.

(c) Code development: A matlab code has been developed which can simulate various MPC

formulations. This code can facilitate comparison of various MPCs and will also serve as a

validation tool for NNET software. The current effort is to generalize the code to include

ability to handle all plant types and all MPC types.

(d) Improved predictor: It is shown that MPC design using better predictors that can minimize

prediction errors. It is shown analytically and numerically that Smith predictor can provide

closed-loop stability under GPC operation for plants with dead times where standard optimal

predictor fails.

(e) Neural network predictors: When neural network is used as predictor it can be shown

that neural network predicts the plant output within some finite error bound under certain

conditions. Our preliminary study shows that with proper choice of update laws and network

architectures such bound can be obtained. However, much work needs to be done to obtain a

similar result in general case. Future work will address this issue.
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